

228TH AVENUE SE ROUNDABOUT FEASIBILTY TRAFFIC ANALYSIS REPORT

Prepared for:
CITY OF SAMMAMISH, WA

Prepared by:
DAVID EVANS AND ASSOCIATES, INC.
415-118th Avenue SE
Bellevue, WA 98005-3518

COSA0000-0010

May 2011

TABLE OF CONTENTS

1.0 PROJECT OVERVIEW 1
2.0 METHODOLOGY AND ASSUMPTIONS 1
3.0 INTERSECTION LOS DEFINITION AND STANDARDS 1
4.0 STUDY AREA 2
5.0 INTERSECTION LEVEL OF SERVICE 5
6.0 INTERSECTION 95 ${ }^{\text {TH }}$ PERCENTILE QUEUES 6
7.0 SAFETY ANALYSIS 7
8.0 CONCLUSIONS 8
LIST OF FIGURES
Figure 1. Study Area and Key Intersections 3
Figure 2. Existing Configuration of the Intersections and Roadway Segments 5
LIST OF TABLES
Table 1. Level of Service Definitions (HCM 2010) 2
Table 2. Intersection LOS and Delay. 6
Table 3. Maximum Approach $95^{\text {th }}$ Percentile Queues 7

APPENDICES

Appendix A - Conceptual Roundabout Layouts
Appendix B - 2016, 2020, and 2030 Signalized Intersection LOS Calculations
Appendix C - 2016, 2020, and 2030 Signalized Intersection Queue Calculations
Appendix D-2016, 2020, and 2030 Roundabout LOS and Queue Calculations

1.0 PROJECT OVERVIEW

The City of Sammamish, Washington (CITY) desires to evaluate the feasibility of roundabouts at SE 8th Street/228th Avenue SE and SE 10th Street/228th Avenue SE in conjunction with a potential community center located at and accessing 228th Avenue SE between the two intersections.

This report presents the methodology, findings, and conclusions regarding the traffic operational analysis for both signal and roundabout control options at SE 8th Street/228th Avenue SE and SE 10th Street/228th Avenue SE. The following Town Center scenarios (which include the proposed community center) were included in the analysis for both locations. All scenarios include the recently-completed annexations adopted in 2009 and 2010.

- 2016 (current concurrency model) with anticipated initial Town Center development application and Community Center
- 2020 with Adopted Town Center Plan and Community Center
- 2030 with Adopted Town Center Plan and Community Center

The proposed new Sammamish Community Center consists of 80,000 square feet of building area, and is located just immediately west of the Sammamish Library. The current access intersection to/from 228th Avenue SE to the Sammamish Library operates with a right-in/right-out control.

The intersections at SE 8th Street/228th Avenue SE and SE 10th Street/228th Avenue SE are currently under signal control.

2.0 METHODOLOGY AND ASSUMPTIONS

The proposed new Sammamish Community Center consisting of 80,000 square feet of building area was added to the available citywide 2016 with anticipated initial Town Center travel demand model, 2020 with adopted town center plan travel demand model, and 2030 with adopted town center plan travel demand model for trip distribution and assignment in the PM peak hour. The intersection forecast volumes at SE 8th Street/228th Avenue SE and SE 10th Street/228th Avenue SE for 2016, 2020, and 2030 were obtained from the travel demand model for operational analysis.

Both signal and roundabout control options were evaluated at the intersections at SE 8th Street and SE 10th Street on 228th Avenue SE. The level of service (LOS) of the signal option was evaluated using the SYNCHRO program (version 7) and the LOS of the roundabout option was evaluated using the aaSIDRA program (version 5.1) that incorporates the latest HCM 2010 LOS method.

The forecast volumes in the PM peak hour at SE 8th Street/228th Avenue SE and SE 10th Street/228th Avenue SE for all scenarios in 2016, 2020, and 2030 were obtained from the citywide travel demand model. The PM peak hour factor and heavy vehicle percentage obtained from the latest counts were applied to all future scenarios.

The signal timings were optimized for all scenarios at the intersections at SE 8th Street and SE 10th Street on 228th Avenue SE.

3.0 INTERSECTION LOS DEFINITION AND STANDARDS

The 2010 Highway Capacity Manual (HCM 2000) methodology prepared by the Transportation Research Board (TRB) was used to calculate the LOS at the intersections within the study area. LOS is a
||blvfs I |project|c|COSA0000001010600INFO\Analysis|Task 5.7 Roundabout Feasibility\Report|Sammamish Roundabout Feasibility Report.doc
May 2011
qualitative measure describing operational conditions within a traffic stream and the perception thereof by road users. For signalized intersections, roundabouts, and sign control intersections, LOS is defined in terms of delay, which is a measure of driver discomfort and frustration, fuel consumption, and lost travel time. There are six LOS levels ranging from LOS A to LOS F, with LOS A representing the best operating conditions and LOS F the worst. Specifically, LOS criteria are stated in terms of the average vehicle control delay for a peak 15 -minute analysis period, factored to a full hour, for the intersection or roundabout as a whole. Based on the new HCM 2010 LOS method, the LOS definition for roundabouts is the same as that for sign control intersections. Table 1 provides LOS definitions for signalized intersections, roundabouts, and sign control intersections.

Table 1. Level of Service Definitions (HCM 2010)

Level of Service (LOS)	Average control delay per vehicle in seconds (d)			Expected Delays
	Signalized Intersections	Roundabouts	Sign Control Intersections	
A	$\mathrm{d} \leq 10$	$\mathrm{d} \leq 10$	$\mathrm{d} \leq 10$	Little or no delay
B	$10<\mathrm{d} \leq 20$	$10<\mathrm{d} \leq 15$	$10<\mathrm{d} \leq 15$	Short traffic delays
C	$20<\mathrm{d} \leq 35$	$15<\mathrm{d} \leq 25$	$15<\mathrm{d} \leq 25$	Average traffic delays
D	$35<\mathrm{d} \leq 55$	$25<\mathrm{d} \leq 35$	$25<\mathrm{d} \leq 35$	Long traffic delays
E	$55<\mathrm{d} \leq 80$	$35<\mathrm{d} \leq 50$	$35<\mathrm{d} \leq 50$	Very long traffic delays
F	$80<d$	$50<\mathrm{d}$	$50<\mathrm{d}$	(1)

(1) When demand volume exceeds the capacity of the movement, extreme delays will be encountered with queuing, which may cause severe congestion affecting other traffic movements in the intersection.
SOURCE: 2010 Highway Capacity Manual (TRB 2010)

In the City's transportation comprehensive plan, the City has developed a level of service standard to measure the overall transportation system's ability to move people and goods. LOS D is the level of service standard for the 228th Avenue SE corridor.

4.0 STUDY AREA

The focus of this study is to assess the intersection traffic control options for two intersections:

- SE 8th Street/228th Avenue SE
- SE 10th Street/228th Avenue SE

The intersection of Library Access/228th Avenue SE will maintain as a right-in/right-out control intersection. The study area intersections are shown in Figure 1.

Figure 1. Study Area and Key Intersections

The following three intersections were identified for evaluation within the study area:

- SE 8th Street/228th Avenue SE: This is a signalized intersection. Right-turn pockets and one through and left-turn shared lane are provided on the eastbound and westbound approaches. Left-turn pockets and two though and right-turn shared lanes are provided on the northbound and southbound approaches. U-turns are allowed on both the northbound and southbound approaches.
- Library Access/228th Avenue SE: This is a right-in and right out control intersection with a stop sign on the eastbound approach. The existing access is a two-lane roadway with one entering lane and one exiting lane. Two through lanes are provided on the northbound and southbound approaches, and northbound left-turning traffic to the access is blocked by the median.
- SE 10th Street/228th Avenue SE: This is a signalized intersection. A right-turn pocket and one through and left-turn shared lane are provided on the westbound approach, and a left-turn pocket and one through and right-turn shared lane are provided on the eastbound approach. Left-turn pockets and two though and right-turn shared lanes are provided on the northbound and southbound approaches. U-turns are allowed on both the northbound and southbound approaches.

The following roads were inventoried as part of this study:

- 228th Avenue SE: This is a north-south principal arterial with a 5-lane roadway in the study area. Curb, gutter, and sidewalks exist along both sides of 228th Avenue NE. The posted speed limit is 40 miles per hour (mph). The alignment is straight with small grade, and the pavement is in good condition.
- SE 8th Street: This is an east-west minor arterial with a 3-lane roadway (a two-way, left-turn lane in the median) in the study area. Curb, gutter, and sidewalks exist along both sides of SE 8th Street. The posted speed limit is 30 mph . The alignment is straight and the pavement is in good condition.
- SE 10th Street: This is an east-west access to Skyline High School with a 2-lane roadway in the study area. Curb, gutter, and sidewalks exist along both sides of SE 10th Street. The alignment is slightly curved and the pavement is in good condition.

The existing configuration of the intersections and roadway segments within the study area is shown in Figure 2.

Figure 2. Existing Configuration of the Intersections and Roadway Segments

5.0 INTERSECTION LEVEL OF SERVICE

Both signal and roundabout options are evaluated at the intersections at SE 8th Street and SE 10th Street on 228th Avenue SE. The LOS of the signal control option was evaluated using the SYNCHRO program (version 7) and the LOS of the roundabout option was evaluated using the aaSIDRA program (version 5.1) that incorporates the latest HCM 2010 LOS method. The new HCM 2010 changes the roundabout LOS definition, and roundabout LOS delay threshold is set the same as un-signalized intersections.

The forecast volumes for all scenarios in 2016, 2020, and 2030 were obtained from the citywide travel demand model. The PM peak hour factor and heavy vehicle percentage obtained from the latest counts were applied to all future scenarios. The signal timings were optimized for all scenarios at the intersections at SE 8th Street and SE 10th Street on 228th Avenue SE.

The existing configuration at the intersections of SE 8th Street/228th Avenue SE and SE 10th Street/228th Avenue SE was applied to the signal control option in the 2016, 2020, and 2030 scenarios. The conceptual layouts of the roundabout option are shown in Appendix A.

Table 2 summarizes the LOS for both the signal and roundabout options. Overall, both the signal and roundabout control options in all scenarios in 2016, 2020, and 2030 meet the City's LOS standard. For the roundabout option in the 2030 scenario, the eastbound approach at SE 10th Street/228th Avenue SE has a delay of 50.9 seconds which is defined as LOS F based on the new HCM 2010 roundabout LOS definition, but the delay is less than 55 seconds which is comparable to LOS D for a signal.

Overall the roundabout option has less intersection-wide delay and better LOS compared to the signal option. The detailed LOS calculations for the signal and roundabout options are shown in Appendices B and \mathbf{D}, respectively.

Table 2. Intersection LOS and Delay

Intersection/Approach	LOS $^{\mathbf{1}}$ (Delay $^{\mathbf{2}}$) with Signal			LOS $^{\mathbf{1}}$ (Delay ${ }^{2}$) with Roundabout		
	$\mathbf{2 0 1 6}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 3 0}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 3 0}$
SE 8th St/228th Ave SE	C (22.2)	C (21.4)	C (24.0)	B (14.8)	B (14.7)	C (16.6)
Eastbound	C (31.0)	C (23.6)	C (21.3)	B (12.5)	B (11.4)	B (13.1)
Westbound	C (34.7)	C (23.5)	C (21.9)	B (11.9)	B (12.4)	B (13.0)
Northbound	B (14.8)	B (14.2)	B (16.3)	C (15.3)	C (16.9)	C (18.3)
Southbound	C (24.0)	C (30.4)	D (35.8)	C (15.9)	B (13.4)	C (16.7)
SE 10th St/228th Ave SE	B (19.2)	C (20.6)	C (28.6)	B (13.5)	B (13.7)	C (24.4)
Eastbound	D (47.6)	D (42.1)	D (44.0)	B (10.4)	A (9.7)	F (50.9)
Westbound	C (32.3)	C (30.2)	C (25.7)	C (16.7)	C (18.5)	C (23.3)
Northbound	C (21.8)	C (23.5)	C (27.6)	B (12.9)	B (14.3)	C (22.0)
Southbound	B (12.1)	B (14.0)	C (24.5)	C (13.5)	B (12.3)	C (17.0)
Library Access/228th Ave SE -Right-in/Right-out control	B (13.0)	B (13.7)	B (13.1)	-	-	-

${ }^{1}$ LOS - Level of Service
${ }^{2}$ Delay - Control Delay, seconds/vehicle
${ }^{3}$ New LOS criteria for roundabouts results in LOS F, but the delay is less than 55 seconds, which is comparable to LOS D for a signal.

6.0 INTERSECTION $95{ }^{\text {TH }}$ PERCENTILE QUEUES

The 95th percentile queues were obtained from SYNCHRO and aaSIDRA models. The aaSIDRA program only provides 95 th percentile queues for each approach; in other words, all movements in that approach have the same approach queues. The maximum approach 95th percentile queues for the signal option were obtained from SYNCHRO so that the queues of the signal option are comparable to the approach queues of the roundabout option.

The approach 95th percentile queues are shown in Table 3. Overall, both signal and roundabout options do not result in substantially long queues, and the roundabout option generally has shorter approach queues compared to the signal option. The detailed queue calculations for the signal and roundabout options are shown in Appendices C and D, respectively. For the signal option at the signalized intersections of SE 8th Street/228th Avenue SE and SE 10th Street/228th Avenue SE, the maximum northbound and southbound approach queues are longer than the available pocket lengths, which would result in the left-turn traffic being blocked by the approach queues.

Table 3. Maximum Approach $95^{\text {th }}$ Percentile Queues

Intersection/Approach	95th Queue ${ }^{\mathbf{1}}$ (feet) with Signal			95th Queue (feet) with Roundabout			
	Pocket length	$\mathbf{2 0 1 6}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 3 0}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 3 0}$
SE 8th St/228th Ave SE							
Eastbound	$50($ RT)	82^{*}	82^{*}	86^{*}	28	25	27
Westbound	270 (RT)	147	96	120	30	24	31
Northbound	175 (LT)	232^{*}	244^{*}	243^{*}	139	165	176
Southbound	150 (LT)	343^{*}	310^{*}	379^{*}	116	88	117
SE 10th St/228th Ave SE							
Eastbound	150 (LT)	24	15	88	11	10	171
Westbound	150 (LT)	142	136	123	44	47	55
Northbound	150 (LT)	368^{*}	366^{*}	357^{*}	105	127	182
Southbound	150 (LT)	235^{*}	271^{*}	266^{*}	119	98	151

${ }^{1}$ Signalized intersection queues are measured for the approach pocket.
${ }^{2}$ Roundabout queues are measured for the entire approach.
*Approach queue lengths are longer than pocket lengths.

7.0 SAFETY ANALYSIS

The collision data for the study area is not available at this point, so a safety analysis of the existing roadway system and intersections was not conducted. Instead, qualitative analyses of the future safety benefits of the proposed roundabout were conducted.

Roundabouts have inherent safety benefits associated with their design where roundabout circulating speeds are low and conflict movements are reduced compared to signalized intersections. A national Cooperative Highway Research Program 2007 report, "Roundabout in United States", concluded that crashes reduced from 1,122 crashes per year to 426 crashes per year (reduced by 35 percent) after 55 traditional intersections were replaced with roundabouts. In addition, the study also found that the number of severe injury-related crashes was reduced significantly, as much as 60 to 80 percent.

Roundabouts, including multi-lane roundabouts, have positive safety records for both pedestrians and bicycles. Multi-lane roundabouts have higher crash rates than single-lane roundabouts, but are comparable to multi-lane signalized intersections. Signalized intersections with right-turn by-pass lanes are very similar to roundabouts, requiring an uncontrolled pedestrian crossing at the right-turn lanes, combined with a signalized crossing.

The lower operating speeds of roundabouts (entering and exiting speeds typically under 25 mph vs. entering and exit speeds of signals on 228th of over 35 mph) significantly reduce the risk of fatalities caused by inattentive drivers or pedestrians.

Vehicle crash severity is significantly reduced with roundabouts compared to signals. Fatal crashes are nearly eliminated (most are a result of impaired drivers) and injury crashes are reduced by 75 percent. Multi-lane roundabouts have higher crash rates than singl- lane roundabouts (typically side-swipe crashes in the circulating roadway). Good geometric design can reduce multi-lane crashes as well.

8.0 CONCLUSIONS

Both signal and roundabout control options were evaluated for SE 8th Street/228th Avenue SE and SE 10th Street/228th Avenue SE for three scenarios: 2016 with initial town center and community center, 2020 with town center and community center, and 2030 with town center and community center.

The traffic analysis showed that roundabout option is feasible for the two intersections. The overall intersection-wide average delay per vehicle and overall queue lengths were less when designed as roundabouts versus signals. In addition, roundabouts would be preferable over signals because traffic entering and exiting the Sammamish Library and the proposed community center can conveniently make U-turns at the two intersections at SE 8th Street and SE 10th Street on 228th Avenue SE while the access intersection still maintains right-in/right-out control. Furthermore, roundabouts would be safer due to their low circulating speeds that would accommodate the high pedestrian and bike activity expected near the study area when the town center and community center are completed.

The proposed conceptual roundabout layout would include two circulating lanes on the northbound and southbound approaches and one circulating lane on the eastbound and westbound approach at the two locations.

Future federal actions related to accommodation of the disabled or public rights-of-way may require that accessible pedestrian signals and detectors be installed on all roundabout approaches to assist pedestrians who have visual disabilities in safely crossing streets at roundabouts. Other options, including rapid flashing beacons (RBF), are being tested.

APPENDIX A - CONCEPTUAL ROUNDABOUT LAYOUTS

APPENDIX B - 2016, 2020, AND 2030 SIGNALIZED INTERSECTION LOS CALCULATIONS

APPENDIX C - 2016, 2020, AND 2030 SIGNALIZED INTERSECTION QUEUE CALCULATIONS

616: SE 8th St. \& 228th Ave SE

Intersection Summary
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	¢EBL		WBL		4	4NBT	SBL	\downarrow
Lane Group								
Lane Group Flow (vph)	26	47	179	65	14	1062	191	967
v/c Ratio	0.22	0.13	0.47	0.15	0.04	0.56	0.54	0.44
Control Delay	51.2	0.7	36.4	8.3	9.2	19.4	20.2	10.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	51.2	0.7	36.4	8.3	9.2	19.4	20.2	10.1
Queue Length 50th (tt)	17	0	98	1	4	247	38	123
Queue Length 95th (ft)	24	0	142	24	9	368	m85	235
Internal Link Dist (ft)		263		1025		593		289
Turn Bay Length (ft)	150		200		150		150	
Base Capacity (vph)	119	367	392	495	377	1929	463	2279
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.22	0.13	0.46	0.13	0.04	0.55	0.41	0.42

Intersection Summary
m Volume for 95 th percentile queue is metered by upstream signal.

616: SE 8th St. \& 228th Ave SE

	\rightarrow	\checkmark	\downarrow		4			$\frac{1}{1}$
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	146	177	155	126	213	1042	85	784
v/c Ratio	0.33	0.29	0.40	0.20	0.77	0.61	0.66	0.58
Control Delay	22.9	8.4	25.4	3.7	48.9	10.3	70.4	27.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	22.9	8.4	25.4	3.7	48.9	10.3	70.4	27.3
Queue Length 50th (ft)	64	25	71	0	136	41	54	205
Queue Length 95th (ft)	82	46	96	24	\#244	162	\#125	310
Internal Link Dist (ft)	203		1235			510		601
Turn Bay Length (ft)		25		520	180		150	
Base Capacity (vph)	574	760	387	623	279	1718	128	1358
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.25	0.23	0.40	0.20	0.76	0.61	0.66	0.58
Intersection Summary								
\# 95th percentile volume exceeds capacity, queue may be longer.								

	$\stackrel{ }{*}$	\rightarrow	\dagger	4	4	4		\downarrow
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	15	55	185	59	18	1138	203	864
v/c Ratio	0.12	0.14	0.51	0.14	0.04	0.63	0.59	0.39
Control Delay	42.6	0.8	35.7	8.7	9.8	19.9	23.8	11.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.6	0.8	35.7	8.7	9.8	19.9	23.8	11.9
Queue Length 50th (ft)	9	0	89	0	6	283	45	116
Queue Length 95th (ft)	15	0	136	23	10	366	m103	271
Internal Link Dist (ft)		263		1025		593		289
Turn Bay Length (ft)	150		200		150		150	
Base Capacity (vph)	185	442	361	499	405	1817	429	2262
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.08	0.12	0.51	0.12	0.04	0.63	0.47	0.38

Intersection Summary
m Volume for 95 th percentile queue is metered by upstream signal.

616: SE 8th St. \& 228th Ave SE

	\rightarrow	\geqslant	\leftarrow		4	4		\downarrow
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	157	171	195	132	217	1033	108	847
v / c Ratio	0.33	0.27	0.48	0.20	0.78	0.68	0.84	0.69
Control Delay	21.0	8.6	25.4	3.4	45.8	12.4	93.5	32.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	21.0	8.6	25.4	3.4	45.8	12.4	93.5	32.3
Queue Length 50th (ft)	64	27	86	0	141	102	69	247
Queue Length 95th (ft)	86	49	120	24	m\#232	243	\#168	\#379
Internal Link Dist (ft)	203		1235			510		601
Turn Bay Length (ft)		25		520	180		150	
Base Capacity (vph)	576	766	409	676	279	1524	128	1235
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.27	0.22	0.48	0.20	0.78	0.68	0.84	0.69
Intersection Summary								
\# 95th percentile volume exceeds capacity, queue may be longer.								
Queue shown is maximum after two cycles.								
m Volume for 95 th percentile queue is metered by upstream signal.								

Intersection Summary
m Volume for 95 th percentile queue is metered by upstream signal.

APPENDIX D - 2016, 2020, AND 2030 ROUNDABOUT LOS AND QUEUE CALCULATIONS

228th Ave SE and SE 8th St
Year 2016 PM Peak Period
Roundabout

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Model used.

228th Ave SE and SE 8th St
Year 2020 PM Peak Period
Roundabout

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow veh/h	$\begin{array}{r} \text { HV } \\ \% \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: 228th Ave SE (NB)										
3L L	214	1.0	0.709	16.9	LOS C	6.5	164.8	0.71	0.93	17.8
8 T T	832	1.0	0.709	16.9	LOS C	6.5	164.8	0.71	0.79	19.0
8R R	210	1.0	0.709	16.9	LOS C	6.5	164.8	0.71	0.83	18.7
Approach	1256	1.0	0.709	16.9	LOS C	6.5	164.8	0.71	0.82	18.7
East: SE 8th St (WB)										
1L L	144	2.0	0.321	12.5	LOS B	0.9	23.9	0.65	0.91	11.7
6 T T	11	2.0	0.321	12.5	LOS B	0.9	23.9	0.65	0.75	21.5
6R R	126	2.0	0.276	12.3	LOS B	0.8	20.4	0.66	0.82	12.9
Approach	280	2.0	0.321	12.4	LOS B	0.9	23.9	0.66	0.86	12.8
North: 228th Ave SE (SB)										
7L L	85	1.0	0.564	13.4	LOS B	3.5	88.1	0.65	1.01	15.1
4T T	666	1.0	0.564	13.4	LOS B	3.5	88.1	0.65	0.84	19.2
$4 \mathrm{R} \quad \mathrm{R}$	118	1.0	0.564	13.4	LOS B	3.5	88.1	0.65	0.89	18.9
Approach	869	1.0	0.564	13.4	LOS B	3.5	88.1	0.65	0.86	18.8
West: SE 8th St (EB)										
5L L	128	1.0	0.286	11.3	LOS B	0.9	21.6	0.62	0.90	13.2
2T T	18	1.0	0.286	11.3	LOS B	0.9	21.6	0.62	0.72	12.2
$2 \mathrm{R} \quad \mathrm{R}$	177	1.0	0.328	11.5	LOS B	1.0	25.1	0.61	0.79	13.4
Approach	323	1.0	0.328	11.4	LOS B	1.0	25.1	0.62	0.83	13.2
All Vehicles	2729	1.1	0.709	14.7	LOS B	6.5	164.8	0.68	0.84	17.7

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Model used.

228th Ave SE and SE 8th St
Year 2030 PM Peak Period
Roundabout

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Model used.

228th Ave SE and SE 10th St
Year 2016 PM Peak Period
Roundabout

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow veh/h	$\begin{gathered} \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: 228th Ave SE (NB)										
3L L	15	1.0	0.601	12.9	LOS B	4.2	105.1	0.59	0.92	18.0
8T T	962	1.0	0.601	12.9	LOS B	4.2	105.1	0.59	0.69	17.7
8R R	100	1.0	0.601	12.9	LOS B	4.2	105.1	0.59	0.75	17.1
Approach	1077	1.0	0.601	12.9	LOS B	4.2	105.1	0.59	0.70	17.6
East: SE 10th St (WB)										
1L L	179	1.0	0.496	16.7	LOS C	1.8	44.4	0.71	0.85	7.8
6 T T	1	1.0	0.496	16.7	LOS C	1.8	44.4	0.71	0.84	12.3
6 R R	64	1.0	0.496	16.7	LOS C	1.8	44.4	0.71	0.84	7.4
Approach	245	1.0	0.496	16.7	LOS C	1.8	44.4	0.71	0.84	7.8
North: 228th Ave SE (SB)										
7L L	191	1.0	0.631	13.5	LOS B	4.7	118.7	0.60	0.88	18.9
4T T	917	1.0	0.631	13.5	LOS B	4.7	118.7	0.60	0.67	20.7
$4 \mathrm{R} \quad \mathrm{R}$	50	1.0	0.631	13.5	LOS B	4.7	118.7	0.60	0.74	20.3
Approach	1159	1.0	0.631	13.5	LOS B	4.7	118.7	0.60	0.71	20.3
West: SE 10th St (EB)										
5 L L	26	1.0	0.166	10.4	LOS B	0.4	10.8	0.64	0.65	10.3
2T T	2	1.0	0.166	10.4	LOS B	0.4	10.8	0.64	0.64	8.2
2R R	47	1.0	0.166	10.4	LOS B	0.4	10.8	0.64	0.64	9.1
Approach	74	1.0	0.166	10.4	LOS B	0.4	10.8	0.64	0.64	9.6
All Vehicles	2555	1.0	0.631	13.5	LOS B	4.7	118.7	0.61	0.71	17.9

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Model used.

228th Ave SE and SE 10th St
Year 2020 PM Peak Period
Roundabout

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow veh/h	$\begin{gathered} \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: 228th Ave SE (NB)										
3L L	18	1.0	0.645	14.3	LOS B	5.0	126.7	0.63	0.93	17.2
8 T T	1031	1.0	0.645	14.3	LOS B	5.0	126.7	0.63	0.72	16.9
8R R	107	1.0	0.645	14.3	LOS B	5.0	126.7	0.63	0.78	16.5
Approach	1156	1.0	0.645	14.3	LOS B	5.0	126.7	0.63	0.73	16.9
East: SE 10th St (WB)										
1L L	185	1.0	0.523	18.5	LOS C	1.9	47.2	0.74	0.89	7.4
6 T T	1	1.0	0.523	18.5	LOS C	1.9	47.2	0.74	0.89	12.1
6R R	58	1.0	0.523	18.5	LOS C	1.9	47.2	0.74	0.89	7.0
Approach	244	1.0	0.523	18.5	LOS C	1.9	47.2	0.74	0.89	7.4
North: 228th Ave SE (SB)										
7L L	203	1.0	0.586	12.3	LOS B	3.9	98.2	0.56	0.87	19.3
4T T	818	1.0	0.586	12.3	LOS B	3.9	98.2	0.56	0.66	21.3
$4 \mathrm{R} \quad \mathrm{R}$	46	1.0	0.586	12.3	LOS B	3.9	98.2	0.56	0.73	20.9
Approach	1067	1.0	0.586	12.3	LOS B	3.9	98.2	0.56	0.70	20.8
West: SE 10th St (EB)										
5L L	15	1.0	0.152	9.7	LOS A	0.4	9.9	0.61	0.62	10.5
2T T	2	1.0	0.152	9.7	LOS A	0.4	9.9	0.61	0.61	8.5
$2 \mathrm{R} \quad \mathrm{R}$	55	1.0	0.152	9.7	LOS A	0.4	9.9	0.61	0.61	9.4
Approach	72	1.0	0.152	9.7	LOS A	0.4	9.9	0.61	0.62	9.7
All Vehicles	2539	1.0	0.645	13.7	LOS B	5.0	126.7	0.61	0.73	17.7

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Model used.

228th Ave SE and SE 10th St
Year 2030 PM Peak Period
Roundabout

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow veh/h	$\begin{gathered} \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: 228th Ave SE (NB)										
3L L	107	1.0	0.762	22.0	LOS C	7.2	181.8	0.84	1.12	13.7
8T T	943	1.0	0.762	22.0	LOS C	7.2	181.8	0.84	1.03	13.7
8R R	105	1.0	0.762	22.0	LOS C	7.2	181.8	0.84	1.06	13.5
Approach	1155	1.0	0.762	22.0	LOS C	7.2	181.8	0.84	1.04	13.7
East: SE 10th St (WB)										
1L L	182	1.0	0.589	23.3	LOS C	2.2	55.0	0.80	1.00	6.6
6 T T	1	1.0	0.589	23.3	LOS C	2.2	55.0	0.80	0.99	11.5
6R R	62	1.0	0.589	23.3	LOS C	2.2	55.0	0.80	0.99	6.1
Approach	245	1.0	0.589	23.3	LOS C	2.2	55.0	0.80	0.99	6.5
North: 228th Ave SE (SB)										
7L L	204	1.0	0.696	17.0	LOS C	6.0	150.8	0.73	1.00	17.7
4T T	822	1.0	0.696	17.0	LOS C	6.0	150.8	0.73	0.86	18.9
4R R	134	1.0	0.696	17.0	LOS C	6.0	150.8	0.73	0.90	18.7
Approach	1161	1.0	0.696	17.0	LOS C	6.0	150.8	0.73	0.89	18.6
West: SE 10th St (EB)										
5L L	179	1.0	0.909	50.9	LOS F	6.8	170.7	0.93	1.68	4.6
2T T	2	1.0	0.909	50.9	LOS F	6.8	170.7	0.93	1.68	3.0
2R R	251	1.0	0.909	50.9	LOS F	6.8	170.7	0.93	1.68	3.6
Approach	432	1.0	0.909	50.9	LOS F	6.8	170.7	0.93	1.68	4.1
All Vehicles	2993	1.0	0.909	24.4	LOS C	7.2	181.8	0.81	1.07	13.0

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Model used.
center. These are based on the community center being constructed at the Kellman site right here behind City Hall.
16. Which of the following three payment/membership fee models would you prefer?
17. Based on the information presented in the slides, would you be more likely to pay daily fees to use the community center or membership fees?
18. Would you be more likely to purchase a three month or annual pass? (Some explanation needed here that shorter term passes or daily passes may increase the subsidy required). Would be nice to know if that would impact their recommendation overall, although I'd still like to know their personal preference.)
19. Having now seen the influence certain spaces of the community center have on revenue, would you be likely to change your priorities from earlier in the discussion?

POTENTIAL COSTS

20. What are your initial reactions to the two preliminary options (levy or utility tax) for paying for the potential community center (i.e. are they too expensive, not expensive, about right)? (May need to explain the difference between the two funding options).
21. Which range do you prefer for the cost of the potential community center (i.e. $\$ 30$ to \$40 million)?
22. Having now seen the cost for each space of the community center, which spaces do you believe are less important that the potential community center could do without?
23. Has the price ranged changed now that you've seen the costs for the spaces?
